901 lines
27 KiB
Go
901 lines
27 KiB
Go
|
// Copyright 2011 The Snappy-Go Authors. All rights reserved.
|
||
|
// Modified for deflate by Klaus Post (c) 2015.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package flate
|
||
|
|
||
|
// emitLiteral writes a literal chunk and returns the number of bytes written.
|
||
|
func emitLiteral(dst *tokens, lit []byte) {
|
||
|
ol := int(dst.n)
|
||
|
for i, v := range lit {
|
||
|
dst.tokens[(i+ol)&maxStoreBlockSize] = token(v)
|
||
|
}
|
||
|
dst.n += uint16(len(lit))
|
||
|
}
|
||
|
|
||
|
// emitCopy writes a copy chunk and returns the number of bytes written.
|
||
|
func emitCopy(dst *tokens, offset, length int) {
|
||
|
dst.tokens[dst.n] = matchToken(uint32(length-3), uint32(offset-minOffsetSize))
|
||
|
dst.n++
|
||
|
}
|
||
|
|
||
|
type snappyEnc interface {
|
||
|
Encode(dst *tokens, src []byte)
|
||
|
Reset()
|
||
|
}
|
||
|
|
||
|
func newSnappy(level int) snappyEnc {
|
||
|
switch level {
|
||
|
case 1:
|
||
|
return &snappyL1{}
|
||
|
case 2:
|
||
|
return &snappyL2{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
|
||
|
case 3:
|
||
|
return &snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}
|
||
|
case 4:
|
||
|
return &snappyL4{snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}}
|
||
|
default:
|
||
|
panic("invalid level specified")
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const (
|
||
|
tableBits = 14 // Bits used in the table
|
||
|
tableSize = 1 << tableBits // Size of the table
|
||
|
tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks.
|
||
|
tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32.
|
||
|
baseMatchOffset = 1 // The smallest match offset
|
||
|
baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5
|
||
|
maxMatchOffset = 1 << 15 // The largest match offset
|
||
|
)
|
||
|
|
||
|
func load32(b []byte, i int) uint32 {
|
||
|
b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
|
||
|
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
|
||
|
}
|
||
|
|
||
|
func load64(b []byte, i int) uint64 {
|
||
|
b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
|
||
|
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
|
||
|
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
|
||
|
}
|
||
|
|
||
|
func hash(u uint32) uint32 {
|
||
|
return (u * 0x1e35a7bd) >> tableShift
|
||
|
}
|
||
|
|
||
|
// snappyL1 encapsulates level 1 compression
|
||
|
type snappyL1 struct{}
|
||
|
|
||
|
func (e *snappyL1) Reset() {}
|
||
|
|
||
|
func (e *snappyL1) Encode(dst *tokens, src []byte) {
|
||
|
const (
|
||
|
inputMargin = 16 - 1
|
||
|
minNonLiteralBlockSize = 1 + 1 + inputMargin
|
||
|
)
|
||
|
|
||
|
// This check isn't in the Snappy implementation, but there, the caller
|
||
|
// instead of the callee handles this case.
|
||
|
if len(src) < minNonLiteralBlockSize {
|
||
|
// We do not fill the token table.
|
||
|
// This will be picked up by caller.
|
||
|
dst.n = uint16(len(src))
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Initialize the hash table.
|
||
|
//
|
||
|
// The table element type is uint16, as s < sLimit and sLimit < len(src)
|
||
|
// and len(src) <= maxStoreBlockSize and maxStoreBlockSize == 65535.
|
||
|
var table [tableSize]uint16
|
||
|
|
||
|
// sLimit is when to stop looking for offset/length copies. The inputMargin
|
||
|
// lets us use a fast path for emitLiteral in the main loop, while we are
|
||
|
// looking for copies.
|
||
|
sLimit := len(src) - inputMargin
|
||
|
|
||
|
// nextEmit is where in src the next emitLiteral should start from.
|
||
|
nextEmit := 0
|
||
|
|
||
|
// The encoded form must start with a literal, as there are no previous
|
||
|
// bytes to copy, so we start looking for hash matches at s == 1.
|
||
|
s := 1
|
||
|
nextHash := hash(load32(src, s))
|
||
|
|
||
|
for {
|
||
|
// Copied from the C++ snappy implementation:
|
||
|
//
|
||
|
// Heuristic match skipping: If 32 bytes are scanned with no matches
|
||
|
// found, start looking only at every other byte. If 32 more bytes are
|
||
|
// scanned (or skipped), look at every third byte, etc.. When a match
|
||
|
// is found, immediately go back to looking at every byte. This is a
|
||
|
// small loss (~5% performance, ~0.1% density) for compressible data
|
||
|
// due to more bookkeeping, but for non-compressible data (such as
|
||
|
// JPEG) it's a huge win since the compressor quickly "realizes" the
|
||
|
// data is incompressible and doesn't bother looking for matches
|
||
|
// everywhere.
|
||
|
//
|
||
|
// The "skip" variable keeps track of how many bytes there are since
|
||
|
// the last match; dividing it by 32 (ie. right-shifting by five) gives
|
||
|
// the number of bytes to move ahead for each iteration.
|
||
|
skip := 32
|
||
|
|
||
|
nextS := s
|
||
|
candidate := 0
|
||
|
for {
|
||
|
s = nextS
|
||
|
bytesBetweenHashLookups := skip >> 5
|
||
|
nextS = s + bytesBetweenHashLookups
|
||
|
skip += bytesBetweenHashLookups
|
||
|
if nextS > sLimit {
|
||
|
goto emitRemainder
|
||
|
}
|
||
|
candidate = int(table[nextHash&tableMask])
|
||
|
table[nextHash&tableMask] = uint16(s)
|
||
|
nextHash = hash(load32(src, nextS))
|
||
|
if s-candidate <= maxMatchOffset && load32(src, s) == load32(src, candidate) {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// A 4-byte match has been found. We'll later see if more than 4 bytes
|
||
|
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
|
||
|
// them as literal bytes.
|
||
|
emitLiteral(dst, src[nextEmit:s])
|
||
|
|
||
|
// Call emitCopy, and then see if another emitCopy could be our next
|
||
|
// move. Repeat until we find no match for the input immediately after
|
||
|
// what was consumed by the last emitCopy call.
|
||
|
//
|
||
|
// If we exit this loop normally then we need to call emitLiteral next,
|
||
|
// though we don't yet know how big the literal will be. We handle that
|
||
|
// by proceeding to the next iteration of the main loop. We also can
|
||
|
// exit this loop via goto if we get close to exhausting the input.
|
||
|
for {
|
||
|
// Invariant: we have a 4-byte match at s, and no need to emit any
|
||
|
// literal bytes prior to s.
|
||
|
base := s
|
||
|
|
||
|
// Extend the 4-byte match as long as possible.
|
||
|
//
|
||
|
// This is an inlined version of Snappy's:
|
||
|
// s = extendMatch(src, candidate+4, s+4)
|
||
|
s += 4
|
||
|
s1 := base + maxMatchLength
|
||
|
if s1 > len(src) {
|
||
|
s1 = len(src)
|
||
|
}
|
||
|
a := src[s:s1]
|
||
|
b := src[candidate+4:]
|
||
|
b = b[:len(a)]
|
||
|
l := len(a)
|
||
|
for i := range a {
|
||
|
if a[i] != b[i] {
|
||
|
l = i
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
s += l
|
||
|
|
||
|
// matchToken is flate's equivalent of Snappy's emitCopy.
|
||
|
dst.tokens[dst.n] = matchToken(uint32(s-base-baseMatchLength), uint32(base-candidate-baseMatchOffset))
|
||
|
dst.n++
|
||
|
nextEmit = s
|
||
|
if s >= sLimit {
|
||
|
goto emitRemainder
|
||
|
}
|
||
|
|
||
|
// We could immediately start working at s now, but to improve
|
||
|
// compression we first update the hash table at s-1 and at s. If
|
||
|
// another emitCopy is not our next move, also calculate nextHash
|
||
|
// at s+1. At least on GOARCH=amd64, these three hash calculations
|
||
|
// are faster as one load64 call (with some shifts) instead of
|
||
|
// three load32 calls.
|
||
|
x := load64(src, s-1)
|
||
|
prevHash := hash(uint32(x >> 0))
|
||
|
table[prevHash&tableMask] = uint16(s - 1)
|
||
|
currHash := hash(uint32(x >> 8))
|
||
|
candidate = int(table[currHash&tableMask])
|
||
|
table[currHash&tableMask] = uint16(s)
|
||
|
if s-candidate > maxMatchOffset || uint32(x>>8) != load32(src, candidate) {
|
||
|
nextHash = hash(uint32(x >> 16))
|
||
|
s++
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
emitRemainder:
|
||
|
if nextEmit < len(src) {
|
||
|
emitLiteral(dst, src[nextEmit:])
|
||
|
}
|
||
|
}
|
||
|
|
||
|
type tableEntry struct {
|
||
|
val uint32
|
||
|
offset int32
|
||
|
}
|
||
|
|
||
|
func load3232(b []byte, i int32) uint32 {
|
||
|
b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
|
||
|
return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
|
||
|
}
|
||
|
|
||
|
func load6432(b []byte, i int32) uint64 {
|
||
|
b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
|
||
|
return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
|
||
|
uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
|
||
|
}
|
||
|
|
||
|
// snappyGen maintains the table for matches,
|
||
|
// and the previous byte block for level 2.
|
||
|
// This is the generic implementation.
|
||
|
type snappyGen struct {
|
||
|
prev []byte
|
||
|
cur int32
|
||
|
}
|
||
|
|
||
|
// snappyGen maintains the table for matches,
|
||
|
// and the previous byte block for level 2.
|
||
|
// This is the generic implementation.
|
||
|
type snappyL2 struct {
|
||
|
snappyGen
|
||
|
table [tableSize]tableEntry
|
||
|
}
|
||
|
|
||
|
// EncodeL2 uses a similar algorithm to level 1, but is capable
|
||
|
// of matching across blocks giving better compression at a small slowdown.
|
||
|
func (e *snappyL2) Encode(dst *tokens, src []byte) {
|
||
|
const (
|
||
|
inputMargin = 8 - 1
|
||
|
minNonLiteralBlockSize = 1 + 1 + inputMargin
|
||
|
)
|
||
|
|
||
|
// Protect against e.cur wraparound.
|
||
|
if e.cur > 1<<30 {
|
||
|
for i := range e.table[:] {
|
||
|
e.table[i] = tableEntry{}
|
||
|
}
|
||
|
e.cur = maxStoreBlockSize
|
||
|
}
|
||
|
|
||
|
// This check isn't in the Snappy implementation, but there, the caller
|
||
|
// instead of the callee handles this case.
|
||
|
if len(src) < minNonLiteralBlockSize {
|
||
|
// We do not fill the token table.
|
||
|
// This will be picked up by caller.
|
||
|
dst.n = uint16(len(src))
|
||
|
e.cur += maxStoreBlockSize
|
||
|
e.prev = e.prev[:0]
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// sLimit is when to stop looking for offset/length copies. The inputMargin
|
||
|
// lets us use a fast path for emitLiteral in the main loop, while we are
|
||
|
// looking for copies.
|
||
|
sLimit := int32(len(src) - inputMargin)
|
||
|
|
||
|
// nextEmit is where in src the next emitLiteral should start from.
|
||
|
nextEmit := int32(0)
|
||
|
s := int32(0)
|
||
|
cv := load3232(src, s)
|
||
|
nextHash := hash(cv)
|
||
|
|
||
|
for {
|
||
|
// Copied from the C++ snappy implementation:
|
||
|
//
|
||
|
// Heuristic match skipping: If 32 bytes are scanned with no matches
|
||
|
// found, start looking only at every other byte. If 32 more bytes are
|
||
|
// scanned (or skipped), look at every third byte, etc.. When a match
|
||
|
// is found, immediately go back to looking at every byte. This is a
|
||
|
// small loss (~5% performance, ~0.1% density) for compressible data
|
||
|
// due to more bookkeeping, but for non-compressible data (such as
|
||
|
// JPEG) it's a huge win since the compressor quickly "realizes" the
|
||
|
// data is incompressible and doesn't bother looking for matches
|
||
|
// everywhere.
|
||
|
//
|
||
|
// The "skip" variable keeps track of how many bytes there are since
|
||
|
// the last match; dividing it by 32 (ie. right-shifting by five) gives
|
||
|
// the number of bytes to move ahead for each iteration.
|
||
|
skip := int32(32)
|
||
|
|
||
|
nextS := s
|
||
|
var candidate tableEntry
|
||
|
for {
|
||
|
s = nextS
|
||
|
bytesBetweenHashLookups := skip >> 5
|
||
|
nextS = s + bytesBetweenHashLookups
|
||
|
skip += bytesBetweenHashLookups
|
||
|
if nextS > sLimit {
|
||
|
goto emitRemainder
|
||
|
}
|
||
|
candidate = e.table[nextHash&tableMask]
|
||
|
now := load3232(src, nextS)
|
||
|
e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv}
|
||
|
nextHash = hash(now)
|
||
|
|
||
|
offset := s - (candidate.offset - e.cur)
|
||
|
if offset > maxMatchOffset || cv != candidate.val {
|
||
|
// Out of range or not matched.
|
||
|
cv = now
|
||
|
continue
|
||
|
}
|
||
|
break
|
||
|
}
|
||
|
|
||
|
// A 4-byte match has been found. We'll later see if more than 4 bytes
|
||
|
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
|
||
|
// them as literal bytes.
|
||
|
emitLiteral(dst, src[nextEmit:s])
|
||
|
|
||
|
// Call emitCopy, and then see if another emitCopy could be our next
|
||
|
// move. Repeat until we find no match for the input immediately after
|
||
|
// what was consumed by the last emitCopy call.
|
||
|
//
|
||
|
// If we exit this loop normally then we need to call emitLiteral next,
|
||
|
// though we don't yet know how big the literal will be. We handle that
|
||
|
// by proceeding to the next iteration of the main loop. We also can
|
||
|
// exit this loop via goto if we get close to exhausting the input.
|
||
|
for {
|
||
|
// Invariant: we have a 4-byte match at s, and no need to emit any
|
||
|
// literal bytes prior to s.
|
||
|
|
||
|
// Extend the 4-byte match as long as possible.
|
||
|
//
|
||
|
s += 4
|
||
|
t := candidate.offset - e.cur + 4
|
||
|
l := e.matchlen(s, t, src)
|
||
|
|
||
|
// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
|
||
|
dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
|
||
|
dst.n++
|
||
|
s += l
|
||
|
nextEmit = s
|
||
|
if s >= sLimit {
|
||
|
t += l
|
||
|
// Index first pair after match end.
|
||
|
if int(t+4) < len(src) && t > 0 {
|
||
|
cv := load3232(src, t)
|
||
|
e.table[hash(cv)&tableMask] = tableEntry{offset: t + e.cur, val: cv}
|
||
|
}
|
||
|
goto emitRemainder
|
||
|
}
|
||
|
|
||
|
// We could immediately start working at s now, but to improve
|
||
|
// compression we first update the hash table at s-1 and at s. If
|
||
|
// another emitCopy is not our next move, also calculate nextHash
|
||
|
// at s+1. At least on GOARCH=amd64, these three hash calculations
|
||
|
// are faster as one load64 call (with some shifts) instead of
|
||
|
// three load32 calls.
|
||
|
x := load6432(src, s-1)
|
||
|
prevHash := hash(uint32(x))
|
||
|
e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)}
|
||
|
x >>= 8
|
||
|
currHash := hash(uint32(x))
|
||
|
candidate = e.table[currHash&tableMask]
|
||
|
e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)}
|
||
|
|
||
|
offset := s - (candidate.offset - e.cur)
|
||
|
if offset > maxMatchOffset || uint32(x) != candidate.val {
|
||
|
cv = uint32(x >> 8)
|
||
|
nextHash = hash(cv)
|
||
|
s++
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
emitRemainder:
|
||
|
if int(nextEmit) < len(src) {
|
||
|
emitLiteral(dst, src[nextEmit:])
|
||
|
}
|
||
|
e.cur += int32(len(src))
|
||
|
e.prev = e.prev[:len(src)]
|
||
|
copy(e.prev, src)
|
||
|
}
|
||
|
|
||
|
type tableEntryPrev struct {
|
||
|
Cur tableEntry
|
||
|
Prev tableEntry
|
||
|
}
|
||
|
|
||
|
// snappyL3
|
||
|
type snappyL3 struct {
|
||
|
snappyGen
|
||
|
table [tableSize]tableEntryPrev
|
||
|
}
|
||
|
|
||
|
// Encode uses a similar algorithm to level 2, will check up to two candidates.
|
||
|
func (e *snappyL3) Encode(dst *tokens, src []byte) {
|
||
|
const (
|
||
|
inputMargin = 8 - 1
|
||
|
minNonLiteralBlockSize = 1 + 1 + inputMargin
|
||
|
)
|
||
|
|
||
|
// Protect against e.cur wraparound.
|
||
|
if e.cur > 1<<30 {
|
||
|
for i := range e.table[:] {
|
||
|
e.table[i] = tableEntryPrev{}
|
||
|
}
|
||
|
e.snappyGen = snappyGen{cur: maxStoreBlockSize, prev: e.prev[:0]}
|
||
|
}
|
||
|
|
||
|
// This check isn't in the Snappy implementation, but there, the caller
|
||
|
// instead of the callee handles this case.
|
||
|
if len(src) < minNonLiteralBlockSize {
|
||
|
// We do not fill the token table.
|
||
|
// This will be picked up by caller.
|
||
|
dst.n = uint16(len(src))
|
||
|
e.cur += maxStoreBlockSize
|
||
|
e.prev = e.prev[:0]
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// sLimit is when to stop looking for offset/length copies. The inputMargin
|
||
|
// lets us use a fast path for emitLiteral in the main loop, while we are
|
||
|
// looking for copies.
|
||
|
sLimit := int32(len(src) - inputMargin)
|
||
|
|
||
|
// nextEmit is where in src the next emitLiteral should start from.
|
||
|
nextEmit := int32(0)
|
||
|
s := int32(0)
|
||
|
cv := load3232(src, s)
|
||
|
nextHash := hash(cv)
|
||
|
|
||
|
for {
|
||
|
// Copied from the C++ snappy implementation:
|
||
|
//
|
||
|
// Heuristic match skipping: If 32 bytes are scanned with no matches
|
||
|
// found, start looking only at every other byte. If 32 more bytes are
|
||
|
// scanned (or skipped), look at every third byte, etc.. When a match
|
||
|
// is found, immediately go back to looking at every byte. This is a
|
||
|
// small loss (~5% performance, ~0.1% density) for compressible data
|
||
|
// due to more bookkeeping, but for non-compressible data (such as
|
||
|
// JPEG) it's a huge win since the compressor quickly "realizes" the
|
||
|
// data is incompressible and doesn't bother looking for matches
|
||
|
// everywhere.
|
||
|
//
|
||
|
// The "skip" variable keeps track of how many bytes there are since
|
||
|
// the last match; dividing it by 32 (ie. right-shifting by five) gives
|
||
|
// the number of bytes to move ahead for each iteration.
|
||
|
skip := int32(32)
|
||
|
|
||
|
nextS := s
|
||
|
var candidate tableEntry
|
||
|
for {
|
||
|
s = nextS
|
||
|
bytesBetweenHashLookups := skip >> 5
|
||
|
nextS = s + bytesBetweenHashLookups
|
||
|
skip += bytesBetweenHashLookups
|
||
|
if nextS > sLimit {
|
||
|
goto emitRemainder
|
||
|
}
|
||
|
candidates := e.table[nextHash&tableMask]
|
||
|
now := load3232(src, nextS)
|
||
|
e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
|
||
|
nextHash = hash(now)
|
||
|
|
||
|
// Check both candidates
|
||
|
candidate = candidates.Cur
|
||
|
if cv == candidate.val {
|
||
|
offset := s - (candidate.offset - e.cur)
|
||
|
if offset <= maxMatchOffset {
|
||
|
break
|
||
|
}
|
||
|
} else {
|
||
|
// We only check if value mismatches.
|
||
|
// Offset will always be invalid in other cases.
|
||
|
candidate = candidates.Prev
|
||
|
if cv == candidate.val {
|
||
|
offset := s - (candidate.offset - e.cur)
|
||
|
if offset <= maxMatchOffset {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
cv = now
|
||
|
}
|
||
|
|
||
|
// A 4-byte match has been found. We'll later see if more than 4 bytes
|
||
|
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
|
||
|
// them as literal bytes.
|
||
|
emitLiteral(dst, src[nextEmit:s])
|
||
|
|
||
|
// Call emitCopy, and then see if another emitCopy could be our next
|
||
|
// move. Repeat until we find no match for the input immediately after
|
||
|
// what was consumed by the last emitCopy call.
|
||
|
//
|
||
|
// If we exit this loop normally then we need to call emitLiteral next,
|
||
|
// though we don't yet know how big the literal will be. We handle that
|
||
|
// by proceeding to the next iteration of the main loop. We also can
|
||
|
// exit this loop via goto if we get close to exhausting the input.
|
||
|
for {
|
||
|
// Invariant: we have a 4-byte match at s, and no need to emit any
|
||
|
// literal bytes prior to s.
|
||
|
|
||
|
// Extend the 4-byte match as long as possible.
|
||
|
//
|
||
|
s += 4
|
||
|
t := candidate.offset - e.cur + 4
|
||
|
l := e.matchlen(s, t, src)
|
||
|
|
||
|
// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
|
||
|
dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
|
||
|
dst.n++
|
||
|
s += l
|
||
|
nextEmit = s
|
||
|
if s >= sLimit {
|
||
|
t += l
|
||
|
// Index first pair after match end.
|
||
|
if int(t+4) < len(src) && t > 0 {
|
||
|
cv := load3232(src, t)
|
||
|
nextHash = hash(cv)
|
||
|
e.table[nextHash&tableMask] = tableEntryPrev{
|
||
|
Prev: e.table[nextHash&tableMask].Cur,
|
||
|
Cur: tableEntry{offset: e.cur + t, val: cv},
|
||
|
}
|
||
|
}
|
||
|
goto emitRemainder
|
||
|
}
|
||
|
|
||
|
// We could immediately start working at s now, but to improve
|
||
|
// compression we first update the hash table at s-3 to s. If
|
||
|
// another emitCopy is not our next move, also calculate nextHash
|
||
|
// at s+1. At least on GOARCH=amd64, these three hash calculations
|
||
|
// are faster as one load64 call (with some shifts) instead of
|
||
|
// three load32 calls.
|
||
|
x := load6432(src, s-3)
|
||
|
prevHash := hash(uint32(x))
|
||
|
e.table[prevHash&tableMask] = tableEntryPrev{
|
||
|
Prev: e.table[prevHash&tableMask].Cur,
|
||
|
Cur: tableEntry{offset: e.cur + s - 3, val: uint32(x)},
|
||
|
}
|
||
|
x >>= 8
|
||
|
prevHash = hash(uint32(x))
|
||
|
|
||
|
e.table[prevHash&tableMask] = tableEntryPrev{
|
||
|
Prev: e.table[prevHash&tableMask].Cur,
|
||
|
Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
|
||
|
}
|
||
|
x >>= 8
|
||
|
prevHash = hash(uint32(x))
|
||
|
|
||
|
e.table[prevHash&tableMask] = tableEntryPrev{
|
||
|
Prev: e.table[prevHash&tableMask].Cur,
|
||
|
Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
|
||
|
}
|
||
|
x >>= 8
|
||
|
currHash := hash(uint32(x))
|
||
|
candidates := e.table[currHash&tableMask]
|
||
|
cv = uint32(x)
|
||
|
e.table[currHash&tableMask] = tableEntryPrev{
|
||
|
Prev: candidates.Cur,
|
||
|
Cur: tableEntry{offset: s + e.cur, val: cv},
|
||
|
}
|
||
|
|
||
|
// Check both candidates
|
||
|
candidate = candidates.Cur
|
||
|
if cv == candidate.val {
|
||
|
offset := s - (candidate.offset - e.cur)
|
||
|
if offset <= maxMatchOffset {
|
||
|
continue
|
||
|
}
|
||
|
} else {
|
||
|
// We only check if value mismatches.
|
||
|
// Offset will always be invalid in other cases.
|
||
|
candidate = candidates.Prev
|
||
|
if cv == candidate.val {
|
||
|
offset := s - (candidate.offset - e.cur)
|
||
|
if offset <= maxMatchOffset {
|
||
|
continue
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
cv = uint32(x >> 8)
|
||
|
nextHash = hash(cv)
|
||
|
s++
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
|
||
|
emitRemainder:
|
||
|
if int(nextEmit) < len(src) {
|
||
|
emitLiteral(dst, src[nextEmit:])
|
||
|
}
|
||
|
e.cur += int32(len(src))
|
||
|
e.prev = e.prev[:len(src)]
|
||
|
copy(e.prev, src)
|
||
|
}
|
||
|
|
||
|
// snappyL4
|
||
|
type snappyL4 struct {
|
||
|
snappyL3
|
||
|
}
|
||
|
|
||
|
// Encode uses a similar algorithm to level 3,
|
||
|
// but will check up to two candidates if first isn't long enough.
|
||
|
func (e *snappyL4) Encode(dst *tokens, src []byte) {
|
||
|
const (
|
||
|
inputMargin = 8 - 3
|
||
|
minNonLiteralBlockSize = 1 + 1 + inputMargin
|
||
|
matchLenGood = 12
|
||
|
)
|
||
|
|
||
|
// Protect against e.cur wraparound.
|
||
|
if e.cur > 1<<30 {
|
||
|
for i := range e.table[:] {
|
||
|
e.table[i] = tableEntryPrev{}
|
||
|
}
|
||
|
e.snappyGen = snappyGen{cur: maxStoreBlockSize, prev: e.prev[:0]}
|
||
|
}
|
||
|
|
||
|
// This check isn't in the Snappy implementation, but there, the caller
|
||
|
// instead of the callee handles this case.
|
||
|
if len(src) < minNonLiteralBlockSize {
|
||
|
// We do not fill the token table.
|
||
|
// This will be picked up by caller.
|
||
|
dst.n = uint16(len(src))
|
||
|
e.cur += maxStoreBlockSize
|
||
|
e.prev = e.prev[:0]
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// sLimit is when to stop looking for offset/length copies. The inputMargin
|
||
|
// lets us use a fast path for emitLiteral in the main loop, while we are
|
||
|
// looking for copies.
|
||
|
sLimit := int32(len(src) - inputMargin)
|
||
|
|
||
|
// nextEmit is where in src the next emitLiteral should start from.
|
||
|
nextEmit := int32(0)
|
||
|
s := int32(0)
|
||
|
cv := load3232(src, s)
|
||
|
nextHash := hash(cv)
|
||
|
|
||
|
for {
|
||
|
// Copied from the C++ snappy implementation:
|
||
|
//
|
||
|
// Heuristic match skipping: If 32 bytes are scanned with no matches
|
||
|
// found, start looking only at every other byte. If 32 more bytes are
|
||
|
// scanned (or skipped), look at every third byte, etc.. When a match
|
||
|
// is found, immediately go back to looking at every byte. This is a
|
||
|
// small loss (~5% performance, ~0.1% density) for compressible data
|
||
|
// due to more bookkeeping, but for non-compressible data (such as
|
||
|
// JPEG) it's a huge win since the compressor quickly "realizes" the
|
||
|
// data is incompressible and doesn't bother looking for matches
|
||
|
// everywhere.
|
||
|
//
|
||
|
// The "skip" variable keeps track of how many bytes there are since
|
||
|
// the last match; dividing it by 32 (ie. right-shifting by five) gives
|
||
|
// the number of bytes to move ahead for each iteration.
|
||
|
skip := int32(32)
|
||
|
|
||
|
nextS := s
|
||
|
var candidate tableEntry
|
||
|
var candidateAlt tableEntry
|
||
|
for {
|
||
|
s = nextS
|
||
|
bytesBetweenHashLookups := skip >> 5
|
||
|
nextS = s + bytesBetweenHashLookups
|
||
|
skip += bytesBetweenHashLookups
|
||
|
if nextS > sLimit {
|
||
|
goto emitRemainder
|
||
|
}
|
||
|
candidates := e.table[nextHash&tableMask]
|
||
|
now := load3232(src, nextS)
|
||
|
e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}}
|
||
|
nextHash = hash(now)
|
||
|
|
||
|
// Check both candidates
|
||
|
candidate = candidates.Cur
|
||
|
if cv == candidate.val {
|
||
|
offset := s - (candidate.offset - e.cur)
|
||
|
if offset < maxMatchOffset {
|
||
|
offset = s - (candidates.Prev.offset - e.cur)
|
||
|
if cv == candidates.Prev.val && offset < maxMatchOffset {
|
||
|
candidateAlt = candidates.Prev
|
||
|
}
|
||
|
break
|
||
|
}
|
||
|
} else {
|
||
|
// We only check if value mismatches.
|
||
|
// Offset will always be invalid in other cases.
|
||
|
candidate = candidates.Prev
|
||
|
if cv == candidate.val {
|
||
|
offset := s - (candidate.offset - e.cur)
|
||
|
if offset < maxMatchOffset {
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
cv = now
|
||
|
}
|
||
|
|
||
|
// A 4-byte match has been found. We'll later see if more than 4 bytes
|
||
|
// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
|
||
|
// them as literal bytes.
|
||
|
emitLiteral(dst, src[nextEmit:s])
|
||
|
|
||
|
// Call emitCopy, and then see if another emitCopy could be our next
|
||
|
// move. Repeat until we find no match for the input immediately after
|
||
|
// what was consumed by the last emitCopy call.
|
||
|
//
|
||
|
// If we exit this loop normally then we need to call emitLiteral next,
|
||
|
// though we don't yet know how big the literal will be. We handle that
|
||
|
// by proceeding to the next iteration of the main loop. We also can
|
||
|
// exit this loop via goto if we get close to exhausting the input.
|
||
|
for {
|
||
|
// Invariant: we have a 4-byte match at s, and no need to emit any
|
||
|
// literal bytes prior to s.
|
||
|
|
||
|
// Extend the 4-byte match as long as possible.
|
||
|
//
|
||
|
s += 4
|
||
|
t := candidate.offset - e.cur + 4
|
||
|
l := e.matchlen(s, t, src)
|
||
|
// Try alternative candidate if match length < matchLenGood.
|
||
|
if l < matchLenGood-4 && candidateAlt.offset != 0 {
|
||
|
t2 := candidateAlt.offset - e.cur + 4
|
||
|
l2 := e.matchlen(s, t2, src)
|
||
|
if l2 > l {
|
||
|
l = l2
|
||
|
t = t2
|
||
|
}
|
||
|
}
|
||
|
// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset)
|
||
|
dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))
|
||
|
dst.n++
|
||
|
s += l
|
||
|
nextEmit = s
|
||
|
if s >= sLimit {
|
||
|
t += l
|
||
|
// Index first pair after match end.
|
||
|
if int(t+4) < len(src) && t > 0 {
|
||
|
cv := load3232(src, t)
|
||
|
nextHash = hash(cv)
|
||
|
e.table[nextHash&tableMask] = tableEntryPrev{
|
||
|
Prev: e.table[nextHash&tableMask].Cur,
|
||
|
Cur: tableEntry{offset: e.cur + t, val: cv},
|
||
|
}
|
||
|
}
|
||
|
goto emitRemainder
|
||
|
}
|
||
|
|
||
|
// We could immediately start working at s now, but to improve
|
||
|
// compression we first update the hash table at s-3 to s. If
|
||
|
// another emitCopy is not our next move, also calculate nextHash
|
||
|
// at s+1. At least on GOARCH=amd64, these three hash calculations
|
||
|
// are faster as one load64 call (with some shifts) instead of
|
||
|
// three load32 calls.
|
||
|
x := load6432(src, s-3)
|
||
|
prevHash := hash(uint32(x))
|
||
|
e.table[prevHash&tableMask] = tableEntryPrev{
|
||
|
Prev: e.table[prevHash&tableMask].Cur,
|
||
|
Cur: tableEntry{offset: e.cur + s - 3, val: uint32(x)},
|
||
|
}
|
||
|
x >>= 8
|
||
|
prevHash = hash(uint32(x))
|
||
|
|
||
|
e.table[prevHash&tableMask] = tableEntryPrev{
|
||
|
Prev: e.table[prevHash&tableMask].Cur,
|
||
|
Cur: tableEntry{offset: e.cur + s - 2, val: uint32(x)},
|
||
|
}
|
||
|
x >>= 8
|
||
|
prevHash = hash(uint32(x))
|
||
|
|
||
|
e.table[prevHash&tableMask] = tableEntryPrev{
|
||
|
Prev: e.table[prevHash&tableMask].Cur,
|
||
|
Cur: tableEntry{offset: e.cur + s - 1, val: uint32(x)},
|
||
|
}
|
||
|
x >>= 8
|
||
|
currHash := hash(uint32(x))
|
||
|
candidates := e.table[currHash&tableMask]
|
||
|
cv = uint32(x)
|
||
|
e.table[currHash&tableMask] = tableEntryPrev{
|
||
|
Prev: candidates.Cur,
|
||
|
Cur: tableEntry{offset: s + e.cur, val: cv},
|
||
|
}
|
||
|
|
||
|
// Check both candidates
|
||
|
candidate = candidates.Cur
|
||
|
candidateAlt = tableEntry{}
|
||
|
if cv == candidate.val {
|
||
|
offset := s - (candidate.offset - e.cur)
|
||
|
if offset <= maxMatchOffset {
|
||
|
offset = s - (candidates.Prev.offset - e.cur)
|
||
|
if cv == candidates.Prev.val && offset <= maxMatchOffset {
|
||
|
candidateAlt = candidates.Prev
|
||
|
}
|
||
|
continue
|
||
|
}
|
||
|
} else {
|
||
|
// We only check if value mismatches.
|
||
|
// Offset will always be invalid in other cases.
|
||
|
candidate = candidates.Prev
|
||
|
if cv == candidate.val {
|
||
|
offset := s - (candidate.offset - e.cur)
|
||
|
if offset <= maxMatchOffset {
|
||
|
continue
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
cv = uint32(x >> 8)
|
||
|
nextHash = hash(cv)
|
||
|
s++
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
|
||
|
emitRemainder:
|
||
|
if int(nextEmit) < len(src) {
|
||
|
emitLiteral(dst, src[nextEmit:])
|
||
|
}
|
||
|
e.cur += int32(len(src))
|
||
|
e.prev = e.prev[:len(src)]
|
||
|
copy(e.prev, src)
|
||
|
}
|
||
|
|
||
|
func (e *snappyGen) matchlen(s, t int32, src []byte) int32 {
|
||
|
s1 := int(s) + maxMatchLength - 4
|
||
|
if s1 > len(src) {
|
||
|
s1 = len(src)
|
||
|
}
|
||
|
|
||
|
// If we are inside the current block
|
||
|
if t >= 0 {
|
||
|
b := src[t:]
|
||
|
a := src[s:s1]
|
||
|
b = b[:len(a)]
|
||
|
// Extend the match to be as long as possible.
|
||
|
for i := range a {
|
||
|
if a[i] != b[i] {
|
||
|
return int32(i)
|
||
|
}
|
||
|
}
|
||
|
return int32(len(a))
|
||
|
}
|
||
|
|
||
|
// We found a match in the previous block.
|
||
|
tp := int32(len(e.prev)) + t
|
||
|
if tp < 0 {
|
||
|
return 0
|
||
|
}
|
||
|
|
||
|
// Extend the match to be as long as possible.
|
||
|
a := src[s:s1]
|
||
|
b := e.prev[tp:]
|
||
|
if len(b) > len(a) {
|
||
|
b = b[:len(a)]
|
||
|
}
|
||
|
a = a[:len(b)]
|
||
|
for i := range b {
|
||
|
if a[i] != b[i] {
|
||
|
return int32(i)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If we reached our limit, we matched everything we are
|
||
|
// allowed to in the previous block and we return.
|
||
|
n := int32(len(b))
|
||
|
if int(s+n) == s1 {
|
||
|
return n
|
||
|
}
|
||
|
|
||
|
// Continue looking for more matches in the current block.
|
||
|
a = src[s+n : s1]
|
||
|
b = src[:len(a)]
|
||
|
for i := range a {
|
||
|
if a[i] != b[i] {
|
||
|
return int32(i) + n
|
||
|
}
|
||
|
}
|
||
|
return int32(len(a)) + n
|
||
|
}
|
||
|
|
||
|
// Reset the encoding table.
|
||
|
func (e *snappyGen) Reset() {
|
||
|
e.prev = e.prev[:0]
|
||
|
e.cur += maxMatchOffset
|
||
|
}
|